Project Title: Bitcoin Price Prediction using LSTM

Overview:

Cryptocurrencies, particularly Bitcoin, exhibit highly volatile price movements, making them an intriguing subject for predictive modeling. This project focuses on developing a machine learning model, specifically a Long Short-Term Memory (LSTM) neural network, to forecast Bitcoin prices. LSTMs are well-suited for timeseries data, making them effective for capturing patterns and dependencies in cryptocurrency price fluctuations.

Objectives:

1. Data Collection:

 I have used historical Bitcoin price data, including daily or hourly prices, trading volumes, and other relevant metrics from YAHOO finance website live data

https://finance.yahoo.com/quote/BTC-USD/history/?fr=sycsrp_catchall

2. Data Preprocessing:

After that I have Clean and preprocess the data, handling missing values, normalizing prices, and create sequences suitable for LSTM input.

3. Exploratory Data Analysis (EDA):

Then I have Explore the dataset to understand trends, seasonality, and other patterns that may influence Bitcoin prices.

4. Feature Engineering:

Then I did some feature engineering to derive additional features or transformations the data that may enhance the model's ability to capture relevant patterns.

5. Model Architecture:

Then I Design and implement an LSTM neural network architecture suitable for time-series prediction.

6. Model Training:

After that Split the dataset into training and testing sets, and train the LSTM model using historical price sequences.

7. Hyperparameter Tuning:

Next i optimize hyperparameters such as the number of LSTM layers, neurons, learning rate, and dropout to improve the model's performance.

8. Model Evaluation:

After that I assess the model's performance on the testing set using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).

9. Visualization:

Finally I used visualization tools to visualize the model predictions against actual Bitcoin prices to analyze the accuracy and potential areas for improvement.

Outcomes:

- A trained LSTM model capable of predicting future Bitcoin prices based on historical data.
- Visualization tools for assessing the model's accuracy and understanding its predictions.
- Real-time prediction capabilities for users interested in shortterm Bitcoin price forecasts.

Accurate cryptocurrency price predictions can be valuable for traders, investors, and other stakeholders in the cryptocurrency market, aiding in decision-making and risk management.


```
+ Code + Text
√ [23]
      # Compile the model
      model_1.compile(optimizer='adam', loss='mse')
6m [23]
      # Train the model
      \verb|callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=2)|\\
      \label{eq:model_1.fit} \mbox{history = model_1.fit(X_train, y_train, batch_size=1, epochs=10)}

    Epoch 1/10

      1110/1110 [
                         Epoch 2/10
      1110/1110 [=
                    Epoch 3/10
      1110/1110 [
                          =======] - 36s 32ms/step - loss: 0.0011
      Epoch 4/10
      1110/1110 [:
                           ========] - 31s 28ms/step - loss: 9.5320e-04
      Epoch 5/10
      1110/1110 [===========] - 36s 32ms/step - loss: 8.9537e-04
      Epoch 6/10
      1110/1110 [==========] - 31s 28ms/step - loss: 7.6707e-04
      Epoch 7/10
      1110/1110 [
                                =======] - 30s 27ms/step - loss: 7.3314e-04
      Epoch 8/10
      1110/1110 [=
                           ======= ] - 31s 27ms/step - loss: 7.8679e-04
      Epoch 9/10
      1110/1110 [
                           Epoch 10/10
      1110/1110 [=
                              ========] - 30s 27ms/step - loss: 6.7640e-04
/<sub>1s</sub> [25]
```

√ 0s completed at 11:12 AM

Get the predicted scaled price

```
last_60_days = data[-60:].values
last_60_days_scaled = scaler.fit_transform(last_60_days)
new_X_test = []
new_X_test.append(last_60_days_scaled)
# Convert the X_test data set to a numpy array
new_X_test = np.array(new_X_test)
# Reshape the data
new_X_test = np.reshape(new_X_test, (new_X_test.shape[0], new_X_test.shape[1], 1))
```

A	В	С	D	E	F	G	Н	1
e	Open	High	Low	Close	Adj Close	Volume		
12/2/2019	7424.036133	7474.818848	7233.399414	7321.988281	7321.988281	17082040706		
12/3/2019	7323.975586	7418.858887	7229.356934	7320.145508	7320.145508	14797485769		
12/4/2019	7320.125	7539.784668	7170.922852	7252.034668	7252.034668	21664240918		
12/5/2019	7253.241699	7743.431641	7232.676758	7448.307617	7448.307617	18816085231		
12/6/2019	7450.561523	7546.996582	7392.175293	7546.996582	7546.996582	18104466307		
12/7/2019	7547.265625	7589.95166	7525.711426	7556.237793	7556.237793	15453520564		
12/8/2019	7551.338867	7634.606445	7476.091309	7564.345215	7564.345215	15409908086		
12/9/2019	7561.79541	7618.091797	7365.985352	7400.899414	7400.899414	17872021272		
12/10/2019	7397.134277	7424.022949	7246.043945	7278.119629	7278.119629	18249031195		
12/11/2019	7277.197754	7324.15625	7195.527344	7217.427246	7217.427246	16350490689		
12/12/2019	7216.73877	7266.639648	7164.741211	7243.134277	7243.134277	18927080224		
12/13/2019	7244.662109	7293.560547	7227.122559	7269.68457	7269.68457	17125736940		
12/14/2019	7268.902832	7308.836426	7097.208984	7124.673828	7124.673828	17137029730		
12/15/2019	7124.239746	7181.075684	6924.375977	7152.301758	7152.301758	16881129804		
12/16/2019	7153.663086	7171.168945	6903.682617	6932.480469	6932.480469	20213265950		
12/17/2019	6931.31543	6964.075195	6587.974121	6640.515137	6640.515137	22363804217		
12/18/2019	6647.698242	7324.984863	6540.049316	7276.802734	7276.802734	31836522778		
12/19/2019	7277.59082	7346.602539	7041.381836	7202.844238	7202.844238	25904604416		
12/20/2019	7208.636719	7257.921875	7086.124023	7218.816406	7218.816406	22633815180		
12/21/2019	7220.59375	7223.226074	7112.73584	7191.158691	7191.158691	19312552168		
12/22/2019	7191.188477	7518.033203	7167.179199	7511.588867	7511.588867	23134537956		
12/23/2019	7508.902344	7656.17627	7326.192383	7355.628418	7355.628418	27831788041		
12/24/2019	7354.393066	7535.716797	7269.528809	7322.532227	7322.532227	22991622105		
12/25/2019	7325.755859	7357.02002	7220.991211	7275.155762	7275.155762	21559505149		
12/26/2019	7274.799316	7388.302734	7200.386719	7238.966797	7238.966797	22787010034		
12/27/2019	7238.141113	7363.529297	7189.934082	7290.088379	7290.088379	22777360996		
12/28/2019	7289.03125	7399.041016	7286.905273	7317.990234	7317.990234	21365673026		